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Abstract. In this paper spinor structures over flag manifolds of compact simple Lie groups are
considered and constructed explicitly, using the general method of D¸abrowski and Trautman. In
this way the existence and uniqueness of these structures is established, in accordance with purely
topological results of Freed. Application of the structures for further studies of fermionic excitations
in theories with coadjoint orbits as phase spaces, including infinite-dimensional systems such as
superfluid helium, is suggested.

1. Introduction

Many systems of interest in physics have their configuration spaces in the form of Lie groups.
For example, a free rigid body has as its configuration space theSO(3) Lie group. The most
interesting example for us is the incompressible non-viscous fluid, for which the configuration
space isSDiffM, the group of diffeomorphisms of a smooth manifoldM. The manifold is
a region in the spaceR3 (or R2 for two-dimensional flows). This group of diffeomorphisms
is infinite-dimensional and as such possesses weaker properties than its finite-dimensional
counterparts, in particular it is so-called Frechét–Lie group (for more details see [1, 2]). There
are also many other interesting systems with Lie groups as configuration spaces considered in
the literature, e.g. [3–6]. The high symmetry causes existence of many integrals of motion and
this sometimes leads to complete integrability of these systems.

Two facts motivated our research. The first was the existence of fermionic degrees of
freedom connected with the motion of critical superfluid helium [7]. Superfluid helium is
a substance that could be modelled as a quantized non-viscous incompressible fluid. Its
classical configuration spaceQ is identified with SDiffM, defined above. Due to right
invariance of the Euler equations with respect to the relabelling of particles by an element
of SDiffM, the classical phase space for the motion of the fluid is reduced from the cotangent
bundleT ∗Q to a coadjoint orbit of the groupSDiffM. In our previous papers [7–9] we
have shown that there are some spinor fields associated with coadjoint orbits of particularly
interesting vortex structures. Our approach was based on using Feynman path integrals. This
approach, although successful in explaining the heat capacity dependence on temperature for
critical superfluid helium [9], is rather heuristic and is not very well founded mathematically.
It is reasonable to also look for the heuristically introduced spinor fields in the geometric
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description of the fluid. Namely, it is well grounded to search for spinor bundles and spinor
fields connected with the coadjoint orbits. The second important fact that caused our interest
in the spinor structures is the theorem which can be found, for example, in the paper by
Freed [10] that spinor structures exist for all generic, i.e. of maximal dimension, coadjoint
orbits of compact semisimple Lie groups (finite dimensional). Such orbits are called flag
manifolds.

Moreover, it could be interesting to find links between the approach and existing results
on quantization of superfluid helium within the coadjoint orbits framework represented by
Goldin et al [11, 12] and also by Penna and Spera [13, 14] and within canonical quantization
by Rasetti and Regge [15].

The general programme we can propose consists of the following tasks.

(a) Establishing conditions under which there exist spinor structures on the coadjoint orbits
for the groupSDiffM.

(b) Explicit construction of the spinor structures and spinor fields.
(c) Physical interpretation of the fermions, their connection with vortices and, especially, with

topologically non-trivial vortices.

This programme is rather difficult to be realized completely. Before treating the full
programme we investigate in this paper spinor structures on coadjoint orbits for finite-
dimensional simple compact Lie groups. Although this problem is simpler than the infinite-
dimensional one, the fact thatSU(N) groups approximate the groupSDiff(T 2) in the limit of
N going to infinity [16, 17] gives us hope that at least some of the constructed spinor structures
will help us to understand the general case. We also proved recently that the Euler equations
for theSU(N) approximate these forSDiff T 2 [18], a fact first anticipated by Zeitlin [19].

The theorem on existence of spinor structures mentioned above, being purely topological,
does not give explicit construction of the spinor structures. Such an opportunity gives the
theorem proved by D¸abrowski and Trautman [20] which shows a relatively simple group-
theoretic way of considering spinor structures over homogeneous Riemannian manifolds. Flag
manifolds with fixed complex structures (such structures exist for coadjoint orbits of finite-
dimensional groups) are homogeneous Riemannian and the theorem could be applied in this
case.

The paper is organized as follows. Firstly, the basic facts about spinor structures on
homogeneous Riemannian manifolds are shortly reviewed. Secondly, the geometry of generic
coadjoint orbits of simple compact Lie groups needed for further consideration is investigated.
Thirdly, spinor structures on the flag manifolds are constructed and some simple examples are
presented in detail. Finally, conclusions and prospects for further investigations are shown.

2. Spinor structures on homogeneous Riemannian manifolds

The Riemannian manifold is a manifoldM equipped with a metric tensorg, i.e. with a
symmetric non-degenerate covariant tensor of second rank with Euclidean signature. Existence
of the metric tensor is equivalent to reduction of the natural frame bundle fromGl(n,R) to
O(n) (n = dimM), possible for all paracompact manifolds. For orientable manifolds further
reduction to theSO(n) group is possible. On the other hand, spinor structures are not natural
bundles and there exist topological obstacles for their existence. Spinor structures are twofold
covers of the orthonormalSO(n) frame bundles. Their existence is guaranteed by vanishing of
the first and second Stiefel–Whitney classesw1 andw2. Calculation of these Stiefel–Whitney
classes is usually difficult. Moreover, it does not lead to an explicit form of the bundles.
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Therefore, it is reasonable to look for more geometric and algebraic instead of topological
methods to derive the results, at least for some class of manifolds.

There is an approach of this kind which enables examination of the problem of existence
of spinor structures on manifolds that are homogeneous Riemannian, introduced by D¸abrowski
and Trautman [21, 20]. Let us restrict all further discussion to smooth and compact manifolds.
A homogeneous Riemannian manifold is a Riemannian manifold on which a Lie groupG acts
transitively by isometries. As a result the manifoldM is diffeomorphic to the quotient space
G/H whereH is a subgroup ofG which is a subgroup of isotropy of a point inM. The form
of the orthonormal frame bundle over the manifoldM ' G/H was derived in [21]. It reads:

G/N ← H/N

↓ (1)

M ' G/H
whereN is a subgroup of ineffectiveness of the action ofG in the tangent space of a point in
M. SinceH/N is obviously a subgroup ofO(n) (n = dimM) and in the orientable case of
SO(n), the spinor structure onM would be a bundle double coveringG/N , with its structure
group being a double cover ofH/N that is a counterimage ofH/N for the usual covering map
ρn: Spin(n) → SO(n). The scheme of constructing the bundle is as follows [20]. We begin
with constructing the universal covering space forG/N with the structural group51(G/N):

G̃/N ← 51(G/N)

↓ (2)

G/N.

One should consider the homomorphisms:h:51(G/N) → Z2. Then one should construct
bundles associated with the universal covering bundle forG/N by homomorphismsh:

(G/N)h← Z2

σ ↓ (3)

G/N.

After that one should compare the groupsσ−1(H/N) andρ−1
n (H/N), whereσ is the covering

map. If they are isomorphic, the bundle

(G/N)h← σ−1(H/N)

↓ (4)

M ' G/H
is the spinor structure we were looking for.

Actually in the general case the spinor structure could not exist or there could be more than
one such structure. Since the generic coadjoint orbits, which we consider, are simply connected
these structures should be unique, and by a theorem [10] they always exist in these particular
cases. Therefore, if we find one possible candidate for a spinor structure with our method,
it is certainly it, and we should not check whetherσ−1(H/N) is isomorphic toρ−1

n (H/N).
On the other hand, we should check the condition whenever our method provides us with
more than one such candidate. Then only the one which satisfies the condition leads to the
spinor structure. Practically, here we do not check the isomorphism of the groups directly.
These groups are, as a rule, of quite a simple form, and there are some specific topological
characteristics, which distinguish them, e.g. whenever the total space of the candidate spinor
structure consists of two copies of the same simply connected space, so that it is a direct product
of this space byZ2, then the structure group should also be of analogous form. On the other
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hand, if the candidate total space is simply connected, so should the structure group be. The
reason in either of these cases is that the base manifold is simply connected. Of course, more
subtle situations could, occur in principle, but we have found in all discussed cases that such
argumentation is sufficient to eliminate all the candidates for spinor structures, which are not
the one we were looking for, and we were left with only one case, which had to be the one
searched for.

3. Geometry of coadjoint orbits of simple compact Lie groups

As we mentioned in the introduction, we are interested mainly in spinor structures on coadjoint
orbits of Lie groups. We will investigate this problem for the case of simple compact Lie groups.

Coadjoint orbits result from coadjoint action of a Lie group in the dual of its Lie algebra.
LetAdg: G→ G be the usual adjoint action of the groupG in its Lie algebraG defined for the
element g∈ G. Let 〈· , ·〉: G∗ ×G→ R be the non-degenerate pairing. The coadjoint action
is defined by

ρ(g): G
∗ → G

∗ g ∈ G ρ(g) = Ad∗g−1

where〈Ad∗
g−1µ, x〉 ≡ 〈µ,Adg−1x〉 for all µ ∈ G∗, x ∈ G.

For this action the isotropy subgroupH is isomorphic in the finite-dimensional compact
generic case to the maximal torusT of the groupG, H ' T , and the orbits can be identified
with the quotient spacesG/T . These orbits are naturally equipped with the Kirillov–Kostant–
Souriau (KKS) symplectic structure (the same is also true for the orbits of infinite-dimensional
groups). For every almost complex structure that agrees with the KKS form existing on the
orbit, the number of which is equal to the number of elements of the Weyl group ofG, there
is a Riemannian metric on the orbit. Let us choose one of them, because spinor structures
should not depend on the choice up to bundle equivalence. The metric, similarly as the KKS
symplectic form, is invariant with respect to the coadjoint action of the groupG. Therefore,
the groupG acts by isometries on the orbitO. Hence the orbit can be treated further as a
Riemannian homogeneous space of the formG/T .

As a consequence we can identify, accordingly to [20], the orthonormal frame bundle for
the orbit with the following bundle:

G/N ← T/N

↓
M ' G/T .

The next problem we should solve is the problem of derivation of the inefficiency kernelN

for the coadjoint action.

Theorem. LetGbe a compact, connected, simple Lie group. Then the kernel of ineffectiveness
N of the action of the groupG in the space tangent at a point of flag manifold is isomorphic to
N = T ∩ Z(G), whereT is the maximal torus ofG andZ(G) is the centre of the groupG.

Proof. Let ρ(g) = Ad∗
g−1, g ∈ G, be the coadjoint actionρ(g): G∗ → G∗. LetOµ be the

orbit of this action passing throughµ ∈ G∗. The orbitOµ can be identified with the coset
spaceG/Gµ whereGµ = {g ∈ G: ρ(g)µ = µ} and we assumeGµ is a maximal torus inG.
We look for a subgroup contained inGµ, for which the action in the tangent space to the orbit
induced by the coadjoint action is trivial. Letv ∈ TµOµ. Then the vectorv is described by a
curvex(t) ⊂ Oµ such thatx(0) = µ, dx/dt |t=0 = v.
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Then,

∀η ∈ G g ∈ T 〈ρ(g)(x(t)), η〉 = 〈Ad∗g−1(x(t)), η〉 = 〈x(t), Adg−1η〉.
We should calculate the derived mapρ ′(g) acting forg ∈ T in the tangent spaceTµOµ. Let
us calculate the derivative with respect tot at t = 0:

〈ρ ′(g)v, η〉 = 〈v,Adg−1η〉
but

〈v,Adg−1η〉 = 〈Ad∗g−1v, η〉
therefore〈ρ ′(g)v, η〉 = 〈Ad∗

g−1v, η〉. Arbitrariness ofη ∈ G leads to

ρ ′(g)v = Ad∗g−1v

whereg ∈ Gµ.
The subgroupN consists of thoseg ∈ G, which also belong toT and satisfy the condition

Ad∗g−1v = v ∀v ∈ TµOµ.
There exists a splittingG∗ = H∗ ⊕M∗ into two vector subspaces, whereH∗ corresponds to
the subgroupGµ ' T . ThenTµOµ 'M∗ and our condition reads

∀v ∈M
∗ Ad∗g−1v = v.

SinceAd∗
g−1 acts identically inH∗,

∀h ∈ H
∗ v ∈M

∗ Ad∗g−1(v + h) = v + h

this could be written as the condition

∀ν ∈ G
∗ Ad∗g−1ν = ν

because every elementν ∈ G∗ could be represented in this form.
This condition considered for everyg ∈ G meansg ∈ Z(G) (the centre ofG), for G

connected but this is the case here. Taking into account thatg ∈ Gµ, this implies that the
kernel of ineffectiveness of the action of the groupG in the coadjoint orbit is

N = Z(G) ∩Gµ = Z(G) ∩ T �

4. Spinor structures on the flag manifolds

There are at least two approaches to introducing spinors on flag manifolds. The reason for
this is flag manifolds are K̈ahler (at least in our case of the finite-dimensional groupG). The
standard way, which is represented in this paper, is to construct the spinor structure double
covering the orthonormal frame bundle and then the spinor bundle as a vector bundle associated
with the spinor structure bundle by the Dirac representation. Spinor fields are smooth sections
of the latter bundle. Topological obstacles to existence of the spinor structure are, as was
mentioned above, the first and the second Stiefel–Whitney classes. In the other approach,
geometric properties and, in particular, the existence of the almost complex structures on the
generic coadjoint orbits make analysis of the structures easier, and, moreover, the construction
of spinor fields more direct. Namely, existence of the almost complex structures implies
orientability of the orbits and vanishing of the first Stiefel–Whitney class for them. As
Freed [10] shows the problem of existence of the spinor bundle for these manifolds can be
reformulated as the problem of existence of a square-root bundle of the standard geometric
(pre)quantization bundle, existence of which is guaranteed if only the first Chern class of the
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tangent bundle of the orbit is integer. This is really the case as discussed Freed. Namely,
c1(G/T ) = 2ρ, whereρ is the sum of the fundamental weights forG. Therefore, it is an
integer. Moreover, it is even. This fact implies that there exists a quantization line bundle.
Moreover, it implies in fact that there also exists a square-root bundle, i.e. the spinor bundle,
because this integer is even. More formally, Freed proved that the second Stiefel–Whitney
classw2 is the reduction mod 2 of the first Chern class and, as a result, it vanishes. These
considerations lead to the theorem, corollary 1.12 in [10]: ‘G/T admits a spin structure’. It is
also argued there that for every flag manifold there exists a unique spin structure because they
are simply connected. We would like to construct the spin structures more explicitly, using the
approach of D¸abrowski and Trautman [21, 20], and continue further with the standard approach
to such constructions.

We will consider only the generic coadjoint orbits for non-exceptional simple compact
groups. These groups areSO(n), SU(n) and Sp(n). We will consider separatelySO(2k)
and SO(2k + 1) groups, omitting only the trivialSO(1) group and the cases of theSO(2)
(trivial orbit) and SO(4) groups (this latter is not simple). The centres of these groups
are:

Z(SU(n)) = Zn
Z(SO(2k)) = Z2

Z(SO(2k + 1)) = {e}
Z(Sp(n)) = Z2.

(5)

The centres are contained in appropriate maximal tori and then we have the ineffectiveness
kernels:

N(SU(n)) = Zn
N(SO(2k)) = Z2

N(SO(2k + 1)) = {e}
N(Sp(n)) = Z2.

(6)

As the first result we state the structure of orthonormal frame bundles for all the orbits:

(a) G = SU(n)

SU(n)/Zn← T/Zn
↓

SU(n)/T .

(b) G = SO(2k)

SO(2k)/Z2← T/Z2

↓
SO(2k)/T .

(c) G = SO(2k + 1)

SO(2k + 1)← T

↓
SO(2k + 1)/T .
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(d) G = Sp(n)

Sp(n)/Z2← T/Z2

↓
Sp(n)/T .

Let us consider next the universal covering bundles for total spaces of orthonormal frame
bundles in the following particular cases.

(a) G = SU(N),N = Zn,G/N = SU(n)/Zn.
The universal covering bundle forG/N is

SU(n)← Zn
↓ (7)

SU(n)/Zn.
(b) G = SO(2k),N = Z2,G/N = SO(2k)/Z2.

The universal covering bundles forG/N are:
1.

Spin(2k)← Z2 × Z2 for k even

↓ (8)

SO(2k)/Z2

2.

Spin(2k)← Z4 for k odd

↓ (9)

SO(2k)/Z2.

(c) G = SO(2k + 1), N = {e},G/N = SO(2k + 1).
The universal covering bundle forG/N is

Spin(2k + 1)← Z2

↓ (10)

SO(2k + 1).

(d) G = Sp(n),N = Z2,G/N = Sp(n)/Z2.
The universal covering bundle forG/N is

Sp(n)← Z2

↓ (11)

Sp(n)/Z2.

Next we should consider homomorphisms for the appropriate groups51(G/N) to Z2,
accordingly to the general scheme [20].

(a) G = SU(n),51(G/N) = Zn.
We should find homomorphismsh:Zn→ Z2, where

Zn =
{

exp

(
i2π

n
k

)
· 1l: k = 0, 1, . . . , n− 1

}
.

These are:
1. h trivial—for all n
2. h(exp(i2π/n)k1l) = (−1l)k—for n even.
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(b) G = SO(2k), k = 3, 4, . . . .

1. G = SO(4l),51(SO(4l)/Z2) = Z2 × Z2.
We look for homomorphismsh:Z2 × Z2 → Z2. There exist four homomorphisms
with the desired properties:
(i) h—trivial.

(ii) h = pr1.
(iii) h = pr2.
(iv) h(a, b) = a · b.
wherepr1, pr2 are projections on the first and the second factor in the product,
respectively.

2. G = SO(4l + 2),51(SO(4l + 2)/Z2) = Z4.
We consider homomorphisms:

h:Z4→ Z2. (12)

There are two such homomorphisms:
(i) h—trivial

(ii) h(a) = a2, wherea is the generator ofZ4 = {e, a, a2, a3} anda4 = e.
(c) G = SO(2k + 1), k = 2, 3, . . . , N = {e}. Since51(G/N) = Z2 we should consider the

homomorphismsh:Z2→ Z2. There are two such homomorphisms:

1. h—trivial.
2. h—identity.

(d) G = Sp(n),51(G/N) = Z2. Similarly to the case (c) there are two homomorphisms
h:51(G/N)→ Z2:

1. h—trivial.
2. h—identity.

As the next step we should decide which homomorphisms lead to spinor structures for the
orbits and construct the spinor structures as explicitly as possible.

(a) G = SU(n), the orthonormal frame bundle for the orbit:

SU(n)/Zn← T/Zn
↓ (13)

SU(n)/T .

Let n = 2k + 1, then there is only one homomorphism:

h:51(SU(2k + 1)/Z2k+1)→ Z2

which is the trivial homomorphism. Since there exists a spinor structure, which is unique,
in this case the only possibility is

(SU(2k + 1)/Z2k+1)× Z2← (T /Z2k+1)× Z2

↓ (14)

SU(2k + 1)/T .

Let n = 2k. There are two homomorphisms:

h:51(SU(2k)/Z2k)→ Z2.

One is trivial, the second one is given by

h

(
exp

(
iπ

k
l

))
= (−1l)l l = 0, 1, . . . ,2k − 1.
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To obtain the spinor structure, let us take into consideration the following facts:

SU(n)/Zn = U(n)/U(1)
and the double cover forSU(n)/Zn one obtains as the double cover forU(n)/U(1).
However, forU(n) the double cover is the metaunitary group, which closes the following
commutative diagram:

MU(n)
inj→ Spin(2n)

ρ2n ↓ ↓ ρ2n

U(n)
inj→ SO(2n).

(15)

Therefore, the double cover ofU(n)/U(1) and therefore also ofSU(n)/Zn is
MU(n)/U(1).
In both cases ofSU(n) flag manifolds this should be the total space of the spinor structure
bundle. We have to show in the case wheren = 2k+1 a different description for the trivial
homomorphismh. There is an alternative description of the acting group asT̂ /(U(1)×Z2)

whereT̂ is the maximal torus inMU(2k + 1).
In the case wheren = 2k the trivial homomorphism does not lead to a spinor structure,
but the non-trivial one does. The reason for this is that the trivial homomorphism leads
to a structure group that is discrete,(T /Z2k) × Z2. Such a group could unambigously
act on a total space of the bundle only in such a case in which the total space itself is
a direct product byZ2 of some simply connected space. Otherwise, the base manifold
would have to be not simply connected, which contradicts the well known and above
discussed statement about all coadjoint orbits discussed in this paper. As a result, only the
non-trivial homomorphism leads to a (as always unique) spinor structure. The diagram
below summarizes the results for the maximal coadjoint orbits ofSU(n):

MU(n)/U(1)←
{
(T /Z2k+1)× Z2 for n = 2k + 1

T/Zk for n = 2k
↓

SU(n)/T .

(16)

(b) G = SO(4l),51(SO(4l)/Z2) = Z2 × Z2.
A universally covering bundle of the total space of the orthonormal frame bundle:

Spin(4l)← Z+
2 × Z−2

↓ (17)

SO(4l)/Z2.

There are four homomorphismsh:51(SO(4l)/Z2)→ Z2:

1. h—trivial.
2. h = pr1.
3. h = pr2.
4. h(a, b) = a · b.

A similar argument as in the caseSU(2k) shows that the trivial homomorphism cannot lead
to a spinor structure. Cases 2 and 3 are also eliminated since they lead just to reductions
of the universal covering bundles to one of the subgroupsZ+

2 orZ−2 of the structural group
Z+

2 × Z−2 of the universal cover of the total space of the orthonormal frame bundle. By
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elimination there is only one homomorhism left, that of case 4, leads to a spinor structure.
The spinor structure is given by:

Spin(4l)/Z2← T̂ /Z2

↓ (18)

SO(4l)/T

whereT̂ = ρ−1
4l (T ), ρ4l is the covering map.

(c) G = SO(4l + 2),51(SO(4l + 2)/Z2) = Z4.

There are two homomorphismsh: Z4→ Z2.

1. h—trivial.
2. h(a) = a2 for a the generator ofZ4.

The universal covering bundle of the orthonormal frame bundle for the orbits:

Spin(4l + 2)← Z4

↓ (19)

SO(4l + 2)/Z2.

By the same arguments as above we eliminate the trivial homomorhism as a candidate
leading to a spinor structure in this case. The spinor structure on the orbit is connected
with the non-trivial homomorphism.
It is given by

Spin(4l + 2)/Z2← T̂ /Z2

↓ (20)

SO(4l + 2)/T

T̂ = ρ−1
4l+2(T ).

(d) G = SO(2k+1),51(SO(2k+1)) = Z2. The universal covering bundle for the orthonormal
frame bundle over the orbit:

Spin(2k + 1)← Z2

↓ (21)

SO(2k + 1).

Similarly to above, also in this case the trivial homomorphism cannot lead to a spinor
structure. The spinor structure is connected with the identity homomorphismh = id and
is of the form

Spin(2k + 1)← ρ−1
2k+1(T )

↓ (22)

SO(2k + 1)/T

ρ2k+1: Spin(2k + 1)→ SO(2k + 1), the covering homomorphism.
(e) G = Sp(n) 51(Sp(n)/Z2) = Z2

The universal covering bundle of the orthonormal frame bundle over the orbit:

Sp(n)← Z2

↓ (23)

Sp(n)/Z2.
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Once more, the trivial homomorphism is eliminated by the same argument as above
as a candidate homomorphism which would lead to a spinor structure. The identity
homomorphismh = id gives the spinor structure for the orbit,

Sp(n)← T

↓ (24)

Sp(n)/T .

Examples

Let us consider some simple examples to see how the formalism works.

(a) G = SU(2) T =
{(

eiφ 0
0 e−iφ

)
;φ ∈ [0, 2π [

}
' U(1)

G/T = SU(2)/U(1) ' S2. Our formalism gives the orthonormal frame bundle overS2:

SU(2)/Z2← U(1)/Z2

↓ (25)

S2

by standard isomorphisms this bundle is identical to

SO(3)← SO(2)

↓ (26)

S2

which is the standard orthonormal frame bundle for the two-dimensional sphere. We
proceed further within the general scheme introduced above.
We should find first the metaunitary groupMU(2) double covering the groupU(2),
considered as a subgroup inSO(4). Therefore, we look for the groupMU(2) such that
the diagram

MU(2)
inj→ Spin(4)

ρ4 ↓ ↓ ρ4

U(2)
inj→ SO(4)

(27)

is commutative. The group Spin(4) = SU(2) × SU(2). As is knownMU(2) =
SU(2) × U(1) and the injection is given by a simple product of the identity map from
SU(2) to itself and of the injection map fromU(1), treated as a subgroup of the second
SU(2) group in the Spin(4) group, to this group.
The spinor structure on theS2 treated as a coadjoint orbit of theSU(2) group is then given
generally by

MU(2)/U(1)← U(1)/{e}
↓ (28)

S2.

SinceMU(2) = SU(2)× U(1),MU(2)/U(1) = SU(2) the spinor structure is given by

SU(2)← U(1)

↓ (29)

S2.
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SinceSU(2) ' Spin(3), U(1) ' Spin(2), the spinor structure can be represented as

Spin(3)← Spin(2)

↓ (30)

S2

which is the standard spinor structure onS2.

(b) G = SO(3) T =

 1 0 0

0 cosφ − sinφ
0 sinφ cosφ

 :φ ∈ [0, 2π [

 ' SO(2).

The flag manifold is equivalent toSO(3)/SO(2) ' S2 and so the orbit is the same manifold as
in the first example. The orthonormal frame bundle looks, accordingly to the general scheme,
as follows:

SO(3)← SO(2)

↓ (31)

S2

and this is the standard orthonormal frame bundle over the two-dimensional sphere. We expect
then that the general procedure should give the standard spinor structure overS2. Let us check
this. The spinor structure should be of the form:

Spin(3)← ρ−1
3 (T )

↓ (32)

S2.

SinceT is isomorphic toSO(2) embedded inSO(3) in the way shown above,ρ−1
3 (T ) is the

subgroup isomorphic to Spin(2) embedded in Spin(3) in the standard way. Therefore, the
spinor structure could be written as

Spin(3)← Spin(2)

↓ (33)

S2

and this is once more the standard spinor structure for the two-dimensional sphere.

5. Conclusions

We constructed as explicitly as possible spinor structures on flag manifolds of non-exceptional
simple compact groups. It is worth mentioning that the construction we have presented also
gives us for free the (reduced) symplectic spinor structure. The reason is the symplectic
structure agrees with the almost complex structure. Nevertheless, the generalization of our
results to the latter groups is straightforward. In our future papers we would like to investigate
spinor bundles and spinor fields over the orbits. In particular, we are interested in spinor
fields satisfying the Dirac equation. This research would be a starting point for more involved
investigations of the spinor fields over coadjoint orbits of groupsSDiffM. Whether existence
of these structures is connected with conditions for polarization of the orbits found by Goldin
et al is the most exciting problem which we would like to investigate.
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